BACKGROUND

Haemovigilance efforts depend on a number of systems, including good traceability, standardised terminology, and consistent coding of critical information. The World Health Assembly Resolution WHA63.22 called on Member States “to encourage the implementation of globally consistent coding systems for human cells, tissues and organs”. The World Health Organization, on its website, states “ISBT 128, managed by ICCBBA, is the sole global standard for the identification and coding of MPHO [Medical Products of Human Origin].” ISBT 128 supports haemovigilance by providing a numbering system that ensures globally unique identification and internationally agreed product terminology.

PURPOSE

By understanding the potential application of ISBT 128 to haemovigilance efforts, it is hoped that its use will be encouraged.

METHODS

ISBT 128 product coding is built using internationally agreed terminology in different combinations to uniquely describe each product. For example, the product description code E0218 represents RED BLOOD CELLS|CPDA-1/500mL/refrigerated/Irradiated/ResLeu:<5E6. This information is encoded for use with computers. The formula for E0281 is C0002-M0000-V0001008-V0012002-V0013002-V0014004. Each number in the formula has a specific meaning (e.g., V0013002 for Irradiated). A database that includes >12,500 codes, descriptions, and formulas is available on the ICCBBA website. The existence of this database with its codes and formulas makes ISBT 128 data ideal for computerized adverse event analysis and the collection of denominator data. Data including product codes and counts from participating organizations can be collected and analysed using the information from the ICCBBA database.

RESULTS

This approach is currently being implemented by the US Centers for Disease Control and Prevention (CDC) in their National Healthcare Safety Network (NHSN). Their monthly denominators will include the total number of transfused and discarded products reported by ISBT 128 product code. Hospitals will be able to electronically transfer product codes for transfused and discarded products to CDC. CDC will then be able to link the product codes to their formulas in the ISBT 128 Product Description Code database and then to CDC biovigilance categories for analysis. It is felt that by automating the collection and analysis of this data a number of advantages are realized including time savings, improved data quality, and improved data granularity.

CONCLUSIONS

ISBT 128 supports haemovigilance efforts by providing globally unique identifiers that support traceability and a standardised product description code database that supports computerized data analysis.